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Lowest Order Squared Rectangles and Squares With 
the Largest Element Not on the Boundary 

By A. J. W. Duijvestijn and P. Leeuw 

Abstrat. The lowest order squared rectangles and squares with the largest element not on 
the boundary are presented. 

Introduction. The problem of dividing a rectangle or a square into a finite 
number of nonoverlapping squares is frequently mentioned in the literature [11, [21, 
[31. A rectangle (or square) that is dissected into N > 1 nonoverlapping squares is 
called a squared rectangle (or square) of order N. The N squares are the elements 
of the squared rectangle (or square). 

If a squared rectangle (or square) does not contain a smaller squared rectangle, it 
is called sinple. If the elements are all unequal, the squaring is called perfect; 
otherwise it is called imperfect. 

Simple squared rectangles and squares can be derived from 3-connected planar 
graphs or so-called c-nets [11]. The order of a c-net is its number of edges. From a 
c-net of order N + 1, one can obtain squared rectangles or squares of order N [1]. 

The c-nets of order N + 1 can be constructed out of the c-nets of order N using 
a theorem of Tutte [4]. Given the complete set of 3-connected planar graphs with N 
edges, the operation of connecting two nonadjacent vertices of each face (of degree 
4 or higher) of each one in all possible ways will result in a collection of new graphs 
with N + 1 edges which includes every one or its dual, except the wheel which 
must be added when N + 1 is even. A wheel of order B is a c-net with one vertex 
of degree B/2 and B - 1 vertices of degree 3. A computer method for generating 
c-nets is described in [51. Tutte's generation method gives a set of c-nets containing 
many duplicates (isomorphic graphs). These duplicates are eliminated by the 
method introduced in [5], and improved in [61, which determines an integer being a 
characteristic for each graph, invariant under isomorphism. 

From a c-net one can calculate a squared rectangle or square by placing an 
electromotive force in one of the branches of the corresponding electrical network 
containing unit resistances in each of the branches [1]. Squared rectangles or 
squares are coded using Bouwkamp's code [2]. 

Two years ago P. J. Federico sent us a simple perfect squared rectangle with the 
property that the largest element was not at the boundary of the rectangle (see 
Figure 1). His solution contains 19 elements. Since we have all 3-connected graphs 
of orders 6 up to and including 22 available on magnetic disk, we could answer the 
question whether Federico's solution was of lowest possible order. 
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We searched through the 3-connected graphs of orders 9 to 19, producing all 
possible squarings of orders up to 18. We found two simple perfect squared 
rectangles of order 17 with the largest element not on the boundary. The solutions 
are given in Figures 2 and 3. The lowest possible order is therefore 17. Of order 18 
we found 5 solutions. The Bouwkamp codes of these solutions are given in Table I. 

From the tables of all (perfect and imperfect) squared squares of orders up to 21 
[7], we found one imperfect squared square with the largest element not on the 
boundary. It is given in Figure 4. The lowest order perfect squared square with the 
largest element not on the boundary is not known. 
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FIGURE 1 
Federico's order 19 simple perfect dissection with the 

largest element not on the boundary 



LOWEST ORDER SQUARED RECTANGLES 225 
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FIGURE 2 
First simple perfect dissection of order 17 with the 

largest element not on the boundary 
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FIGURE 3 

Second simple perfect dissection of order 17 with the 
largest element not on the boundary 
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FIGuRE 4 
Imperfect squared square of order 21 with the 

largest element not on the boundary 
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TABLE I 

Simple perfect squared rectangles with the largest element 

not on the boundary 

Order 17. 

First example: (773,764,656)(108,164,384)(9,807,56)(782)(220)(604)(766,16) 
(750,73)(677) 

Second example: (766,770,737)(33,704)(762,4)(807)(328,376)(713,49)(664,192) 
(472,48)(424) 

Order 18. 

(a): (842,848,837)(11,826)(836,6)(865)(219,607)(592,209,35)(174,557,169) 
(388)(383) 

(b): (2517,2530,2446)(84,2362)(2504,13)(2627)(349,2013)(1800,704)(568,744,1664) 
(1096,176)(920) 

(C): (193,194,190)(4,186)(192,1)(199)(17,169)(160,24,8)(16,56,152)(40)(96) 

(d): (166,167,163)(4,159)(165,1)(172)(17,65,77)(157,8)(149,48X101,12)(89) 
(e): (2446,2442,2253)(189,2064)(4,2627)(2450)(752,1312)(2277,173)(2104,888,560) 

(328,1544)(1216) 
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